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Abstract
We formulate the framework of N -fold supersymmetry in one-body quantum
mechanical systems with position-dependent mass (PDM). We show that some
of the significant properties in the constant-mass case such as the equivalence
to weak quasi-solvability also hold in the PDM case. We develop a systematic
algorithm for constructing an N -fold supersymmetric PDM system. We apply
it to obtain the type A N -fold supersymmetry in the case of PDM, which
is characterized by the so-called type A monomial space. The complete
classification and general form of effective potentials for the type A N -fold
supersymmetry in the PDM case are given.

PACS numbers: 03.65.Ge, 02.30.Hg, 11.30.Pb

1. Introduction

Recently, quantum systems with position-dependent mass (PDM) have attracted much
attention in various research fields of physics such as semiconductors, quantum dots, liquid
crystals, and so on. Accordingly, investigations into exact solutions of PDM quantum systems
have been carried out increasingly in the last few years. For references, see e.g., [1–26] and
those cited therein. Due to the fact that the position-dependent mass m(q) does not commute
with the momentum operator p = −id/dq, ambiguity arises in defining a quantum kinetic
operator which is formally Hermitian and reduces to the classical kinetic term T = p2/2m(q).
Hence, the following operator proposed by von Roos [27] has been generally considered:

H = −1

4

(
m(q)α

d

dq
m(q)β

d

dq
m(q)γ + m(q)γ

d

dq
m(q)β

d

dq
m(q)α

)
+ V (q), (1.1)

with the constraint α + β + γ = −1. A different choice of the parameters results in a different
correction to the original potential profile V (q), and the above Hamiltonian always has the
following form:

H = − 1

2m(q)

d2

dq2
+

m′(q)

2m(q)2

d

dq
+ U(q), (1.2)
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where the effective potential U(q) is given by

U(q) = V (q) − (α + γ )
m′′(q)

4m(q)2
+ (αγ + α + γ )

m′(q)2

2m(q)3
. (1.3)

Hence, the typical investigations into (quasi-)exact solvability of PDM quantum systems
consist in finding simultaneously a pair of an effective potential U(q) and a mass function
m(q) for which the PDM Hamiltonian (1.2) admits (a number of) exact eigenfunctions in
closed forms. Up to now, two different methods have been frequently employed, namely,
coordinate transformations including point canonical transformations [1, 2, 5–9, 12, 16, 18,
20, 25], and supersymmetric methods [3, 4, 7, 8, 11, 13, 14, 19–22, 24, 25]. The latter
approaches were also applied to many-body PDM quantum systems [26]. For the methods
themselves developed in ordinary quantum systems, see references cited therein.

On the other hand, the framework of N -fold supersymmetry has been rapidly developed
in one-body ordinary quantum mechanical systems, especially in the last few years. It
was originally proposed as a higher derivative generalization of ordinary supercharges [28].
Later, a significant breakthrough was achieved by the proof of the equivalence between
the N -fold supersymmetry and (weak) quasi-solvability [29]. Based on the equivalence, a
systematic algorithm for constructing an N -fold supersymmetric system was developed [30].
Owing to the fact that the framework of N -fold supersymmetry includes all the ordinary
supersymmetric methods as its special cases and to its equivalence to weak quasi-solvability,
which is a less restrictive concept than quasi-exact solvability [31, 32], it provides one of the
most powerful methods for investigating one-body quantum mechanical systems which admit
analytic solutions in so far the least restrictive sense.

Considering the present situation described above, it is natural to ask whether or not
we can formulate the N -fold supersymmetry also in PDM quantum systems, especially as a
powerful tool for constructing (quasi-)solvable PDM systems. In this paper, we show that it is
indeed possible and that the characteristic properties such as the equivalence to weak quasi-
solvability also hold in the PDM case. Furthermore, we generalize the systematic algorithm
for constructing an N -fold supersymmetric ordinary quantum system in [30] to the PDM
case. As an illustration, we apply it to construct the so-called type A N -fold supersymmetry
[33, 34] in PDM quantum systems.

The paper is organized as follows. In the following section, we review the precise
definition of some important concepts in the paper, such as quasi-solvability, to avoid
ambiguity. In section 3, we define N -fold supersymmetry in one-body quantum systems
with position-dependent mass and discuss a couple of general significant consequences. In
section 4, we develop a systematic algorithm for constructing an N -fold supersymmetric
PDM quantum system by slightly generalizing the one in the constant-mass case in [30]. In
section 5, we apply the algorithm to construct the type A N -fold supersymmetry in the PDM
case. In section 6, we completely classify and present the explicit forms of all the inequivalent
type A models with arbitrary position dependence of mass. In the last section, we summarize
the results and discuss various future issues.

2. Definition

First of all, we shall give precise definition of some key concepts in the paper. The original
ideas can be found in [29, 35] but we have slightly modified the terms from the view point of
the recent advances in this research field. Let H be a linear differential operator of a single
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variable and PN be an (at most) N th-order linear differential operator. Then, H is said to be
weakly quasi-solvable with respect to PN [34] if it preserves the vector space VN defined by

VN = ker PN . (2.1)

A linear differential operator H of a single variable is said to be quasi-solvable if it preserves a
finite-dimensional functional space VN whose basis admits an analytic expression in a closed
form:

HVN ⊂ VN , dimVN = n(N ) < ∞, VN = 〈φ1(q), . . . , φn(N )(q)〉. (2.2)

It is evident that a weakly quasi-solvable operator is also quasi-solvable if linearly independent
N solutions of PNφ = 0 can be obtained in the closed form. An immediate consequence
of the above definition of quasi-solvability is that, since we can calculate finite-dimensional
matrix elements Hk,l defined by

Hφk =
n(N )∑
l=1

Hk,lφl, k = 1, . . . , n(N ), (2.3)

we can diagonalize the operator H and obtain its spectra in the space VN with finite algebraic
manipulations. However, these calculable spectra and the corresponding vectors of VN in
general only give local solutions of the characteristic equation. This fact naturally leads to the
well-known concept of quasi-exact solvability. A quasi-solvable operator H is said to be quasi-
exactly solvable (on S ⊂ R or C) if the invariant space VN is a subspace of a Hilbert space
L2(S) on which the operator H is naturally defined. It is evident that if an operator is not only
quasi-solvable but also quasi-exactly solvable, the calculable spectra and the corresponding
vectors of VN give a part of the exact eigenvalues and eigenfunctions of H, respectively. On
the other hand, there are cases in which all the eigenfunctions and eigenvalues can be obtained
analytically such as the well-known harmonic oscillator. In order to characterize these cases,
we first introduce another subclass of quasi-solvability. A quasi-solvable operator H is said to
be solvable if it preserves an infinite flag of finite-dimensional functional spaces VN ,

V1 ⊂ V2 ⊂ · · · ⊂ VN ⊂ · · · , (2.4)

whose bases admit explicit analytic expressions in closed forms, that is,

HVN ⊂ VN , dimVN = n(N ) < ∞, VN = 〈φ1(q), . . . , φn(N )(q)〉, (2.5)

for all N = 1, 2, 3, . . . . A consequence of solvability defined above is that, for an arbitrary
natural number N , we can obtain additional n(N + 1) − n(N ) local solutions of the
characteristic equation for H in VN+1 with finite algebraic manipulations, based on the
knowledge of them in the subspace VN ⊂ VN+1. Hence, arbitrary number of local solutions
of the characteristic equation for H can be calculated, in principle, with a well-defined finite
algebraic algorithm. As in the case of quasi-solvability, however, they are not necessarily the
exact eigenfunctions and eigenvalues of H. A solvable operator H is said to be exactly solvable
(on S ⊂ R or C) if the sequence of the spaces (2.4) in S satisfies,

VN (S) → L2(S) (N → ∞). (2.6)

This definition precisely fits what is commonly meant by exactly solvable. In the PDM case,
it is pointed out [22] that in addition to the square integrability, any eigenfunction ψ of a PDM
Hamiltonian (1.2) should satisfy on the boundary ∂S

|ψ(q)|2
m(q)

1
2

→ 0 (q → ∂S), (2.7)
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in order for the PDM Hamiltonian to be Hermitian. In this paper, however, we do not discuss
Hilbert spaces, boundary conditions, normalizability, etc which strongly rely on a specific
choice of m(q). We do not assume Hermiticity of Hamiltonians and thus reality of effective
potential U(q) and mass function m(q) either, taking into account possible application to
recently developing non-Hermitian quantum theories.

3. N -fold supersymmetry in PDM quantum systems

To define the N -fold supersymmetry in one-body PDM quantum systems, let us first introduce
fermionic variables ψ and ψ † satisfying

{ψ,ψ} = {ψ †, ψ †} = 0, {ψ,ψ †} = 1. (3.1)

In this paper, we consider a super-Hamiltonian

HN = H−
N ψψ † + H +

Nψ †ψ, (3.2)

where the components H±
N are given by PDM Schrödinger operators:

H±
N = − 1

2m(q)

d2

dq2
+

m′(q)

2m(q)2

d

dq
+ U±

N (q). (3.3)

For the above system, we define N -fold supercharges Q±
N by

Q−
N = PNψ † ≡ P −

N ψ †, Q+
N = P t

Nψ ≡ P +
Nψ, (3.4)

where the operator PN is an N th-order linear differential operator of the following form1:

PN = m(q)−
N
2

dN

dqN +
N−1∑
k=0

wk(q)
dk

dqk
. (3.5)

In equation (3.4), the superscript t denotes the formal transposition. A system HN is said to
be N -fold supersymmetric with respect to Q±

N if it commutes with them:[
Q±

N , HN
] = 0. (3.6)

From the above simple generalization of N -fold supersymmetry to PDM systems, we can
show that most of the relevant consequences of N -fold supersymmetry in ordinary quantum
systems with constant mass also hold in the present case. Let us first prove the equivalence
between N -fold supersymmetry and weak quasi-solvability. Suppose a super-Hamiltonian
HN is N -fold supersymmetric. It is easy to see that the component operators H±

N satisfy the
following intertwining relation

P −
N H−

N = H +
NP −

N , (3.7)

and its formal transposition, P +
NH +

N = H−
N P +

N , and thus they preserve the vector spaces
ker P ±

N , respectively. Hence, H±
N are weakly quasi-solvable. Conversely, let us assume that

a PDM Schrödinger operator H is weakly quasi-solvable with respect to an N th-order linear
differential operator PN of the form (3.5). Define a linear operator G = PNH − H1PN with

H1 = H + m
N−2

2 w′
N−1 +

N − 1

2
m

N−4
2 m′wN−1 +

N 2m′′

4m2
− 3N 2(m′)2

8m3
. (3.8)

From the assumed weak quasi-solvability, H ker PN ⊂ ker PN , we have

φ ∈ ker PN 	⇒ Gφ = PNHφ − H1PNφ = 0. (3.9)

1 Here we fix the irrelevant overall multiplicative constant factor so that PN is monic when m(q) = 1.
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On the other hand, it is easy to check that G is of order (at most) N − 1 while the dimension
of ker PN is N . Hence, equation (3.9) cannot be hold unless G is a null operator. Therefore,
if we put H−

N = H,H +
N = H1, P

−
N = PN and P +

N = P t
N , they satisfy the intertwining relation

(3.7) and thus compose an N -fold supersymmetric system.
Another significant consequence of N -fold supersymmetry in ordinary quantum systems

is that the anti-commutator of N -fold supercharges Q−
N and Q+

N is a polynomial of degree
N in the super-Hamiltonian HN , the polynomial being (proportional to) the characteristic
polynomial of the component Hamiltonians H±

N restricted in the invariant subspaces V±
N

[29, 36]: {
Q−

N , Q+
N

} ∝ det
(
H±

N
∣∣
V±
N

− HN
)
. (3.10)

We can easily prove that the same is also true in the PDM case. Indeed, in the proof of the
theorem on SUSY algebras with T symmetry in [36], we only need to modify the functions
w±

N in equation (6) as w±
N (x) = (∓1)Nm(x)−

N
2 and the definition of the operators r±

l in
equation (19) as

r−
l = m(x)−

1
2

(
d

dx
+ χ−

l (x)

)
, r+

l =
(

− d

dx
+ χ+

l (x)

)
m(x)−

1
2 , l = 1, . . . ,N ,

(3.11)

for a proof of equation (3.10) in the PDM case. In our definition of Hamiltonians (3.3), the
proportional constant in equation (3.10) is 2N .

Other characteristic features such as the almost isospectral property between a pair of
Hamiltonians H±

N are easily derived in the same way as in the ordinary case (cf [29]), and thus
we do not repeat a presentation of them in this paper.

4. Algorithm for constructing an N -fold SUSY PDM system

In [30], a systematic algorithm for constructing an N -fold supersymmetric ordinary quantum
mechanical system was developed. In this section, we show that it can be easily generalized
to the PDM case. The starting point is an N -dimensional linear functional space

Ṽ−
N = 〈ϕ̃1(z), . . . , ϕ̃N (z)〉, (4.1)

and a second-order linear differential operator

H̃−
N = −A(z)

d2

dz2
− B(z)

d

dz
− C(z), (4.2)

which leaves ṼN invariant. Let

P̃ −
N = g(z)

(
dN

dzN
+

N−1∑
k=0

w̃k(z)
dk

dzk

)
(4.3)

denote the most general N th-order linear differential operator with kernel ṼN , where the
function g(z) is for the time being undetermined. We shall first construct another second-
order linear differential operator of the form

H̃ +
N = H̃−

N − δC(z), (4.4)

satisfying the intertwining relation

P̃ −
N H̃−

N − H̃ +
N P̃ −

N = 0. (4.5)

To this end, note that the lhs of equation (4.5) is in general a linear differential operator of
order N + 1. Equating to zero the coefficients of ∂N+1

z and ∂N
z in this operator, we obtain the
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following two equations for the functions g(z) and δC(z):

g′

g
= N

2

A′

A
, (4.6)

δC = N (N − 2)

2

(
A′′ − (A′)2

2A

)
+ N

(
B ′ − BA′

2A

)
− A′w̃N−1 − 2Aw̃′

N−1. (4.7)

When equations (4.6) and (4.7) are satisfied, the lhs of equation (4.5) is a linear differential
operator of order at most N − 1 annihilating the N -dimensional vector space ṼN , and hence
it vanishes identically.

The last step in our construction consists in applying a change of variable

z = z(q) (4.8)

and a gauge transformation

H̃±
N → e−W−

N H̃±
N eW

−
N
∣∣
z=z(q)

≡ H±
N , (4.9)

to simultaneously convert H̃±
N into the PDM Schrödinger form (3.3). Note that it is certainly

possible since (by construction) H̃−
N and H̃ +

N differ by a scalar function only. The appropriate
change of variable and gauge transformation are determined by

z′(q)2 = 2m(q)A(z), (4.10)

dW−
N

dq
= z′′(q)

2z′(q)
− m(q)B(z)

z′(q)
− m′(q)

2m(q)
. (4.11)

The effective potentials U±
N are given by

U±
N (q) = 1

2m(q)

[(
dW−

N
dq

)2

− d2W−
N

dq2
+

m′(q)

m(q)

dW−
N

dq

]
− C±(z(q)), (4.12)

where C−(z) = C(z) and C+(z) = C(z)+ δC(z). From the above construction it immediately
follows that the system (3.2) and (3.4), with H±

N given by equation (4.9) and PN by

PN = e−W−
N P̃ −

N eW
−
N
∣∣
z=z(q)

, (4.13)

is N -fold supersymmetric. Indeed, intertwining relation (3.7) follows by applying the gauge
transformation and change of variable to equation (4.5). Furthermore, it is important to note
that the form of PN in equation (4.13) is compatible with equation (3.5). From equations (4.6)
and (4.10) we have

g′(z)
g(z)

= N z′′(q)

z′(q)2
− Nm′(q)

2m(q)z′(q)
. (4.14)

Integrating the latter equation we obtain

g(z) = m(q)−
N
2 z′(q)N , (4.15)

where we take the proportional constant to be 1. Thus, it immediately follows from
equations (4.3) and (4.13) that PN in equation (4.13) is indeed of the form (3.5). It is
evident from the construction that the Hamiltonian H−

N preserves the kernel of PN given by

V−
N ≡ ker PN = 〈ϕ1(q), . . . , ϕN (q)〉, (4.16)

with

ϕi(q) = e−W−
N ϕ̃i(z)|z=z(q) (i = 1, . . . ,N ). (4.17)

We thus call the space V−
N the solvable sector of H−

N .
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Although the construction of an N -fold supersymmetric PDM system itself has been
completed, we can make it entirely symmetric with respect to the partner Hamiltonians H−

N
and H +

N . For this purpose, note that from the transposition of the intertwining relation (3.7),
it follows that H +

N leaves invariant the kernel of the supercharge

P +
N = P t

N = eW
−
N P̃ t

N e−W−
N . (4.18)

Using the identity (∂z)
t = −z′(q)∂zz

′(q)−1 and equation (4.3) with (4.15), we can express P +
N

as

P +
N = e−W+

N P̄ +
N eW

+
N , (4.19)

where

P̄ +
N = m(q)−

N
2 z′(q)N

[(
− d

dz

)N
+

N−1∑
k=0

(
− d

dz

)k

w̃k(z)

]
, (4.20)

and the function W+
N is given by

W+
N = −W−

N + (N − 1) ln|z′(q)| − N
2

ln|m(q)|. (4.21)

Now, the partner Hamiltonians H±
N are expressed in a completely symmetric way as

H±
N = e−W±

N ¯̃H
±
N eW

±
N , (4.22)

where the gauged Hamiltonians H̃−
N and H̄ +

N leave the kernels of the gauged N -fold
supercharges Ṽ−

N = ker P̃ −
N and V̄+

N = ker P̄ +
N , respectively. To express W±

N in a symmetric
way, we introduce two functions by

W(q) = 1

2

(
dW−

N
dq

− dW+
N

dq

)
, (4.23)

E(q) = z′′(q)

z′(q)
. (4.24)

From equation (4.10), its immediate consequence

z′′(q) = m(q)A′(z) +
m′(q)A(z)

z′(q)
, (4.25)

and equation (4.11), the function W(q) is expressed as

W(q) = −m(q)

z′(q)

(
N − 2

2
A′(z) + B(z)

)
≡ −m(q)

z′(q)
Q(z). (4.26)

We then have

W±
N = −N

4
ln|m(q)| +

N − 1

2

∫
dq E(q) ∓

∫
dq W(q)

= −1

4
ln|m(q)| +

N − 1

4
ln|2A(z)| ±

∫
dz

m(q)Q(z)

2A(z)
. (4.27)

The connection between the gauged Hamiltonians H̄ +
N and H̃ +

N follows easily from
equations (4.9), (4.22) and (4.23) as

H̄ +
N = exp

(
−2

∫
dqW(q)

)
H̃ +

N exp

(
2
∫

dqW(q)

)
. (4.28)
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Using equations (4.2), (4.4), (4.7), (4.10) and (4.26), we obtain the following unified formula
for the gauged Hamiltonians:

¯̃H
±
N = −A(z)

d2

dz2
+

[
N − 2

2
A′(z) ± Q(z)

]
d

dz
− C(z)

− (1 ± 1)

[
N − 1

2
Q′(z) − 1

2
A′(z)w̃N−1(z) − A(z)w̃′

N−1(z)

]
. (4.29)

Interestingly, the form of the gauged Hamiltonian H̄ +
N as well as H̃−

N is completely the same
as in the case of constant mass, cf equation (2.45) in [30]. It should also be noted that the
mass dependence of the Hamiltonians H±

N given by equation (4.22) emerges only through the
change of variable determined by equation (4.10) and the gauge potentials by equations (4.11)
and (4.21) since the gauged Hamiltonians (4.29) do not depend on the mass function m(q).
As a consequence, each of the spectrum of the Hamiltonians H±

N does not depend on the mass
function m(q).2 This kind of spectral independence from the mass function is first pointed out
in [10].

5. Type A N -fold supersymmetry

We shall now construct type A N -fold supersymmetric PDM quantum systems with the aid
of the algorithm just developed in the previous section. The type A N -fold supersymmetry
[33] is characterized by the so-called type A monomial space [30] preserved by H̃−

N :

ṼN = 〈1, z, . . . , zN−1〉. (5.1)

Applying the algorithm with this type A monomial space, we can construct the most general
form of type A N -fold supersymmetric PDM quantum systems. Fortunately, we can omit
the process of constructing gauged Hamiltonians. Noting the fact that the form of gauged

Hamiltonians ¯̃H
±
N is completely the same as in the constant-mass case, we immediately have

[34]

¯̃H
±
N = −A(z)

d2

dz2
+

[
N − 2

2
A′(z) ± Q(z)

]
d

dz

−
[
(N − 1)(N − 2)

12
A′′(z) ± N − 1

2
Q′(z) + R

]
, (5.2)

where R is a constant, and Q(z) and A(z) must satisfy

d3Q(z)

dz3
= 0 for N � 2, (5.3)

d5A(z)

dz5
= 0 for N � 3, (5.4)

or equivalently,

Q(z) = b2z
2 + b1z + b0 for N � 2, (5.5)

A(z) = a4z
4 + a3z

3 + a2z
2 + a1z + a0 for N � 3, (5.6)

2 Some of the eigenvalues can (dis)appear depending on m(q) since normalizability of the corresponding wave
functions does rely on it.
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where bi and ai are constants. The most general N th-order linear differential operator of the
form (4.3), with g(z) given by equation (4.15), which annihilates the type A space is obviously

P̃ −
N = m(q)−

N
2 z′(q)N

dN

dzN
. (5.7)

Hence, using equations (4.13), (4.24) and (4.27), we obtain the operator PN for the type A
N -fold supercharge

PN = m(q)−
N
2

N−1∏
k=0

(
d

dq
+ W(q) − Nm′(q)

4m(q)
+
N − 1 − 2k

2
E(q)

)
, (5.8)

where the products of operators are ordered according to the following definition:

k1∏
k=k0

Ak = Ak1Ak1−1 · · · Ak0 . (5.9)

The above PN indeed reduces to the ordinary type A N -fold supercharge when m(q) = 1. The
pair of type A PDM Hamiltonians H±

N can be expressed in terms of the functions E(q),W(q)

and m(q) using the following formulae, which follow from equations (4.10) and (4.26):

A′(z) = z′(q)

(
E(q)

m(q)
− m′(q)

2m(q)2

)
, (5.10)

A′′(z) = E′(q) + E(q)2

m(q)
− 3m′(q)E(q)

2m(q)2
− m(q)m′′(q) − 2m′(q)2

2m(q)3
, (5.11)

Q′(z) = −W ′(q) + E(q)W(q)

m(q)
+

m′(q)W(q)

m(q)2
. (5.12)

From equations (4.22), (4.27), (5.2), and the above formulae, we finally obtain

H±
N = − 1

2m(q)

d2

dq2
+

m′(q)

2m(q)2

d

dq
+

W(q)2

2m(q)
− N 2 − 1

24m(q)
(2E′(q) − E(q)2)

+
N 2 + 2

24

m′′(q)

m(q)2
− 5N 2 + 16

96

m′(q)2

m(q)3
± N

(
W ′(q)

2m(q)
− m′(q)W(q)

4m(q)2

)
− R.

(5.13)

This is the most general form of type A N -fold supersymmetric PDM Hamiltonians and
exactly reduces to the ordinary type A when m(q) = 1. It should be also noted that the above
formula is consistent with equation (3.8). From the form of the type A N -fold supercharge
(5.8) we have

wN−1(q) = Nm(q)−
N
2 W(q) − N 2

4
m(q)−

N+2
2 m′(q). (5.14)

With this formula, it is straightforward to check for the type A Hamiltonians that

H +
N − H−

N = NW ′

m
− Nm′W

2m2

= m
N−2

2 w′
N−1 +

N − 1

2
m

N−4
2 m′wN−1 +

N 2m′′

4m2
− 3N 2m′2

8m3
,

and thus consistent with equation (3.8). Finally, we shall express the two conditions (5.3)
and (5.4) for type A N -fold supersymmetry in terms of E(q),W(q) and m(q). Using
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equations (4.10), (4.24) and (4.26), we obtain(
d

dq
− E

)
d

dq

(
d

dq
+ E

)
W

m
= 0 for N � 2, (5.15)

(
d

dq
− 2E

) (
d

dq
− E

)
d

dq

(
d

dq
+ E

) (
E

m
− m′

2m2

)
= 0 for N � 3. (5.16)

In particular, in the case of N = 1 the system composed of PN and H±
N reduces to

P1 = 1

m(q)
1
2

(
d

dq
+ W(q) − m′(q)

4m(q)

)
, (5.17)

H±
1 = − 1

2m(q)

d2

dq2
+

m′(q)

2m(q)2

d

dq
+

W(q)2

2m(q)
+

m′′(q)

8m(q)2

− 7m′(q)2

32m(q)3
±

(
W ′(q)

2m(q)
− m′(q)W(q)

4m(q)2

)
− R, (5.18)

with which the super-Hamiltonian H1 and supercharges Q±
1 defined by equations (3.2) and

(3.4) satisfy ordinary superalgebra:[
Q±

1 , H1
] = 0,

{
Q−

1 , Q+
1

} = 2(HN + R). (5.19)

Hence, it exactly reduces to (ordinary) supersymmetric PDM quantum systems. We note
that thanks to the assignment of the functions W(q) and m(q) in equation (5.17), which is
different from the one conventionally employed in the literature, the resulting pair of H±

1 has
completely the symmetric form.

From equations (4.20) and (5.7) the operator P̄ +
N in the type A case reads

P̄ +
N = (−1)Nm(q)−

N
2 z′(q)N

dN

dzN
, (5.20)

and thus V̄+
N = ker P̄ +

N is also the type A monomial space (5.1). Hence, the solvable sectors
of the type A Hamiltonians H±

N are given by

V±
N = e−W±

N 〈1, z, . . . , zN−1〉|z=z(q), (5.21)

where W±
N are defined in equation (4.27).

Another important consequence of the fact that the type A systems with arbitrary PDM
are obtained from the same gauged Hamiltonians (5.2) is that we can obtain completely
the same results as in the constant mass case if we follow the procedure of generating the
generalized Bender–Dunne polynomial (GBDP) systems

{
π [N ]

n (E)
}∞

n=0 [34, 37]. Hence, the
anti-commutator of the type A N -fold supercharges in the PDM case is also proportional to
the N th critical GBDP in the type A super-Hamiltonian (for details see [34] and references
cited therein): {

Q−
N , Q+

N
} = 2Nπ

[N ]
N (HN ). (5.22)

6. Classification of the models

Owing to the fact that the form of the gauged Hamiltonians does not depend on the mass
function m(q), we can classify type A N -fold supersymmetric PDM systems completely the
same way as in the constant mass case [34]. In the complex classification scheme based on
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Table 1. Canonical forms of A(z) and the functions f (u) which characterize the change of variable.
The parameters ν, g2, g3 ∈ C satisfy ν �= 0 and g3

2 − 27g2
3 �= 0.

Case Canonical form f (u)

I 1/2 u
II 2z u2

III 2νz2 e2
√

νu

IV 2ν(z2 − 1) cosh 2
√

νu

V 2z3 − g2z/2 − g3/2 ℘(u)

the GL(2, C) invariance, there are five inequivalent models according to different canonical
forms of A(z) given in the second column of table 1.

A new feature due to the position dependence of mass emerges through the change of
variable. From equation (4.10) the change of variable is determined by

±u(q) ≡ ±
∫

dq
√

m(q) =
∫

dz√
2A(z)

. (6.1)

Expressing the variable z in terms of u from this formula, z = f (u), we obtain the change of
variable as

z = z(q) = f (u)|u=u(q). (6.2)

The function f (u) in each of the five cases is given in the third column of table 1. When
m(q) = 1, it is evident that u(q) = q (up to an additive constant), and thus reproduces all the
type A models with constant mass in [34]. The form of the change of variable (6.2) indicates
that it is more convenient to express the type A PDM Hamiltonians (5.13) in terms of f (u).
To this end, we must first express derivatives of z with respect to q in terms of f (u) and m(q).
For instance, the first derivative of z(q) reads

z′(q) = f ′(u)u′(q) = m(q)
1
2 f ′(u). (6.3)

Similarly, we can derive

z′′(q) = m(q)f ′′(u) +
m′(q)

2m(q)
1
2

f ′(u), (6.4)

z′′′(q) = m(q)
3
2 f ′′′(u) +

3

2
m′(q)f ′′(u) +

(
m′′(q)

2m(q)
1
2

− m′(q)2

4m(q)
3
2

)
f ′(u). (6.5)

Using equations (4.24) and (6.3)–(6.5), we obtain

2E′(q) − E(q)2 = 2z′′′(q)

z′(q)
− 3z′′(q)2

z′(q)2

= m(q)

(
2f ′′′(u)

f ′(u)
− 3f ′′(u)2

f ′(u)2

)
+

m′′(q)

m(q)
− 5m′(q)2

4m(q)2
. (6.6)

The function W(q) and its derivative are also expressed in terms of f (u) and m(q) with the
aid of equations (4.26), (6.3) and (6.4) as

W(q) = −m(q)
1
2

f ′(u)
Q(z)

∣∣∣∣
z=f (u)

, (6.7)

W ′(q) =
[(

m(q)f ′′(u)

f ′(u)2
− m′(q)

2m(q)
1
2 f ′(u)

)
Q(z) − m(q)Q′(z)

]
z=f (u)

. (6.8)
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Substituting equations (6.6)–(6.8) into equation (5.13), we finally have the expression of the
type A PDM Hamiltonians in terms of f (u) and m(q) as follows:

H±
N = − 1

2m(q)

d2

dq2
+

m′(q)

m(q)2

d

dq
+

[
Q(z)2

2f ′(u)2
− N 2 − 1

24

(
2f ′′′(u)

f ′(u)
− 3f ′′(u)2

f ′(u)2

)

+
m′′(q)

8m(q)2
− 7m′(q)2

32m(q)3
± N

2

(
f ′′(u)

f ′(u)2
Q(z) − Q′(z)

)
− R

]
z=f (u)

. (6.9)

Similarly, the gauge potentials W±
N are expressed as

W±
N = −1

4
ln|m(q)| +

N − 1

2
ln|f ′(u)| ±

∫
du

Q(f (u))

f ′(u)
. (6.10)

Hence, the solvable sectors of the type A Hamiltonians (5.21) reads

V±
N = m(q)

1
4 f ′(u)−

N−1
2 exp

(
∓

∫
du

Q(f (u))

f ′(u)

)
〈1, f (u), . . . , f (u)N−1〉. (6.11)

Observing the above formulae and noting the fact that u(q) → q (up to an additive constant)
as m(q) → 1, we can find a simple procedure to obtain a type A PDM quantum system from
a type A constant-mass model. That is, if we denote the pair of potentials, gauge potentials
and solvable sectors of a type A constant-mass model as V

(0)±
N (q),W (0)±

N (q) and V(0)±
N [q],

respectively, those of the corresponding type A PDM model are given by

U±
N (q) = V

(0)±
N (u(q)) +

m′′(q)

8m(q)2
− 7m′(q)2

32m(q)3
, (6.12a)

W±
N (q) = −1

4
ln|m(q)| + W (0)±

N (u(q)), V±
N [q] = m(q)

1
4 V(0)±

N [u(q)]. (6.12b)

This result is consistent with the one obtained by the point canonical transformation, see e.g.,
equations (2.7) and (2.8) in [6], and equations (10), (13) and (14) in [8]. Advantages of
the framework of N -fold supersymmetry are that it can automatically determine the general
functional form of the potentials for which we can obtain (a number of) analytic solutions and
that, in a good situation like the present type A case, we can completely classify all the possible
(quasi-)solvable models which have a specific type of solutions. In addition, it enables us to
obtain simultaneously a pair of almost isospectral Hamiltonians.

In what follows, we show the explicit form of effective potentials and solvable sectors in
each case classified as in table 1. We note that type A models become not only quasi-solvable
but also solvable when the parameters in the potentials satisfy

a4 = a3 = b2 = 0. (6.13)

Hence, the models in cases I–IV are solvable when b2 = 0, while the model in case V is
always only quasi-solvable irrespective of the values of the parameters bi .

6.1. Case I: A(z) = 1/2, f (u) = u

Effective potentials:

U±
N (q) = 1

2
(b2u(q)2 + b1u(q) + b0)

2 ∓ Nb2u(q) +
m′′(q)

8m(q)2
− 7m′(q)2

32m(q)3
∓ Nb1

2
− R.

(6.14)

Solvable sectors:

V±
N = m(q)

1
4 exp

(
∓b2

3
u(q)3 ∓ b1

2
u(q)2 ∓ b0u(q)

)
〈1, u(q), . . . , u(q)N−1〉. (6.15)
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6.2. Case II: A(z) = 2z, f (u) = u2

Effective potentials:

U±
N (q) = b2

2

8
u(q)6 +

b2b1

4
u(q)4 +

1

8

(
b2

1 + 2b0b2 ∓ 6Nb2
)
u(q)2

+
(N − 1 ± b0)(N + 1 ± b0)

8u(q)2
+

m′′(q)

8m(q)2
− 7m′(q)2

32m(q)3
∓ Nb1

4
+

b0b1

4
− R.

(6.16)

Solvable sectors:

V±
N = m(q)

1
4 u(q)−

N−1±b0
2 exp

(
∓b2

8
u(q)4 ∓ b1

4
u(q)2

)
〈1, u(q)2, . . . , u(q)2(N−1)〉. (6.17)

6.3. Case III: A(z) = 2νz2, f (u) = e2
√

νu

Effective potentials:

U±
N (q) = b2

2

8ν
e4

√
νu(q) +

b2

4ν
(b1 ∓ 2N ν) e2

√
νu(q) +

b0

4ν
(b1 ± 2N ν) e−2

√
νu(q) +

b2
0

8ν
e−4

√
νu(q)

+
m′′(q)

8m(q)2
− 7m′(q)2

32m(q)3
+

b2
1 + 2b2b0

8ν
+
N 2 − 1

6
ν − R. (6.18)

Solvable sectors:

V±
N = m(q)

1
4 exp

(
∓ b2

4ν
e2

√
νu(q) ± b0

4ν
e−2

√
νu(q) − 2(N − 1)ν ± b1

2
√

ν
u(q)

)

×〈1, e2
√

νu(q), . . . , e2(N−1)
√

νu(q)〉. (6.19)

6.4. Case IV: A(z) = 2ν(z2 − 1), f (u) = cosh 2
√

νu

Effective potentials:

U±
N (q) = b2

2

8ν
sinh2 2

√
νu(q) +

b2(b1 ∓ 2N ν)

2ν
sinh2 √

νu(q) +
(b2 + b0)(b1 ± 2N ν)

8ν sinh2 √
νu(q)

+
(b2 + b0 − b1 ∓ 2(N − 1)ν)(b2 + b0 − b1 ∓ 2(N + 1)ν)

8ν sinh2 2
√

νu(q)

+
m′′(q)

8m(q)2
− 7m′(q)2

32m(q)3
∓ Nb2

2
+

2b2(b2 + b0 + b1) + b2
1

8ν
+
N 2 − 1

6
ν − R.

(6.20)

Solvable sectors:

V±
N = m(q)

1
4 (sinh 2

√
νu(q))−

N−1
2 ∓ b1

4ν (tanh
√

νu(q))∓
b2+b0

4ν exp

(
∓ b2

4ν
cosh 2

√
νu(q)

)

×〈1, cosh 2
√

νu(q), . . . , (cosh 2
√

νu(q))N−1〉. (6.21)
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6.5. Case V: A(z) = 2z3 − g2z/2 − g3/2, f (u) = ℘(u)

Effective potentials:

U±
N (q) =

3∑
l=1

η±
l

8H 2
l [℘(u(q)) − el]

+
(N − 1 ∓ b2)(N + 1 ∓ b2)

8
℘(u(q))

+
m′′(q)

8m(q)2
− 7m′(q)2

32m(q)3
± Nb1

4
+

b2b1

4
− R, (6.22)

where el = ℘(wl) (l = 1, 2, 3) are the values of the Weierstrass function at the half of the
fundamental periods 2wl and H 2

l = 3e2
l − g2/4. The coupling constants η±

l are given by

η±
l = −b2el(b2el − 2b1)

(
2H 2

l − 5e2
l

)
+

(
b2

1 + 2b2b0
)
e2
l − 2b1b0el + b2

0

+ (N 2 − 1)
(
H 4

l − 18e2
l H

2
l + 36e4

l

)
∓ 2N

[
(b2el − b1)

(
5H 2

l − 12e2
l

)
el − b0H

2
l

]
. (6.23)

Solvable sectors:

V±
N = m(q)

1
4

3∏
l=1

|℘(u(q)) − el|
− N−1

4 ∓ b2e2
l
−b1el +b0

4H2
l 〈1, ℘ (u(q)), . . . , ℘ (u(q))N−1〉. (6.24)

7. Discussion and summary

In this paper, we have generalized N -fold supersymmetry in ordinary quantum systems to
those with position-dependent mass. The significant properties such as the equivalence to weak
quasi-solvability also hold in the PDM case. We have developed the general procedure to
construct an N -fold supersymmetric PDM system and applied it to obtain the general form of
type AN -fold supersymmetry in PDM quantum systems. It turns out that the framework ofN -
fold supersymmetry is quite powerful also in searching (quasi-)solvable PDM Hamiltonians
as well as ordinary ones. In fact, many of the so far constructed (quasi-)solvable PDM
Hamiltonians in the literature are realized as special cases of type A N -fold supersymmetry.
In addition, we can simultaneously obtain a pair of almost isospectral PDM Hamiltonians in
the framework of N -fold supersymmetry.

There are a lot of future issues worthy investigating in this research direction. For example,
it would be straightforward to construct other types of N -fold supersymmetry, namely,
type B [38] and type C [30] in PDM quantum systems. They are characterized by respectively
the type B monomial space

ṼN = 〈1, z, . . . , zN−2, zN 〉, (7.1)

and by the type C monomial space

ṼN = 〈1, z, . . . , zN1−1, zλ, zλ+1, . . . , zλ+N2−1〉, (7.2)

with λ ∈ R\{−N2,−N2 +1, . . . ,N1}. Applying the algorithm in section 4 with above spaces,
we will obtain the general form of type B and type C N -fold supersymmetric PDM quantum
systems. We expect the same relations as equations (6.12a)–(6.12b) since they are universal
in view of the point canonical transformation.

Investigation of dynamical properties are interesting and important. In contrast to the
ordinary constant-mass case, not only the form of potential but also the position dependence of
mass affect various aspects of PDM systems. In particular, dynamical N -fold supersymmetry
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breaking can take place through the nonperturbative effect due to quantum tunnelling [39, 40].
Hence, it is quite interesting if we can experimentally observe such a phenomenon in realistic
systems such as semiconductors, quantum dots, and so on.

Construction of (quasi-)solvable quantum many-body systems with position-dependent
mass is a challenging problem. Recently, we have developed systematic and powerful
methods for constructing quasi-solvable differential operators of arbitrary number of variables
and applied them to construct quasi-solvable many-body Hamiltonians with constant mass
[41–43]. We expect that the methods would also work well in the PDM case. Up to now, we
have found four different types of quasi-solvable differential operators of arbitrary number of
variables, namely, type A [41], type C [42], type A′, and type C′ [43]. In the constant-mass
case, most of the obtained Hamiltonians are Calogero–Sutherland and Inozemtsev models
associated with classical root systems. Hence, we will obtain a set of mass-deformed quantum
systems of these types which preserve (quasi-)solvability. In this respect, we anticipate a
many-body generalization of the relations (6.12a)–(6.12b), which relates a (quasi-)solvable
potential in PDM systems with that in constant-mass systems.
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